Flank wear prediction in drilling using back propagation neural network and radial basis function network
نویسندگان
چکیده
In the present work, two different types of artificial neural network (ANN) architectures viz. back propagation neural network (BPNN) and radial basis function network (RBFN) have been used in an attempt to predict flank wear in drills. Flank wear in drill depends upon speed, feed rate, drill diameter and hence these parameters along with other derived parameters such as thrust force, torque and vibration have been used to predict flank wear using ANN. Effect of using increasing number of sensors in the efficacy of predicting drill wear by using ANN has been studied. It has been observed that inclusion of vibration signal along with thrust force and torque leads to better prediction of drill wear. The results obtained from the two different ANN architectures have been compared and some useful conclusions have been made.
منابع مشابه
On the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملArtificial Neural Network Involved in the Action of Optimum Mixed Refrigerant (Domestic Refrigerator) (TECHNICAL NOTE)
This analysis principally focuses on the implementation of Radial basis function (RBF) and back propagation (BPA) algorithms for training artificial neural network (ANN) to get the optimum mixture of Hydro fluorocarbon (HFC) and organic compound (Hydrocarbons) for obtaining higher coefficient of Performances (COPs). The thermodynamical properties of mixed refrigerants are observed using REFPROP...
متن کاملPrediction of flank wear by using back propagation neural network modeling when cutting hardened H-13 steel with chamfered and honed CBN tools
Productivity and quality in the finish turning of hardened steels can be improved by utilizing predicted performance of the cutting tools. This paper combines predictive machining approach with neural network modeling of tool flank wear in order to estimate performance of chamfered and honed Cubic Boron Nitride (CBN) tools for a variety of cutting conditions. Experimental work has been performe...
متن کاملPrediction of the Effect of Polymer Membrane Composition in a Dry Air Humidification Process via Neural Network Modeling
Utilization of membrane humidifiers is one of the methods commonly used to humidify reactant gases in polymer electrolyte membrane fuel cells (PEMFC). In this study, polymeric porous membranes with different compositions were prepared to be used in a membrane humidifier module and were employed in a humidification test. Three different neural network models were developed to investigate several...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 8 شماره
صفحات -
تاریخ انتشار 2008